

H.V.A.C.INNOVATIONS CONSULTING AND SOFTWARE. ABN 52006468275 23A DENT STREET GLEN IRIS 3146. PH / FAX 03 98855270---MOB 0418129347 berna84@bigpond.net.au

RESLOAD 5.5 PRO SUITE AU NOTES

BERN CONNELL 03 9885 5270 Berna84@bigpond.net.au

Automated heat load program by Bern Connell.

This program is based on the AREMA-CSIRO method and data, first accepted by the industry in 1981 and supported by.

AIRAH. – AREMA. – HCIAV. – MPA. - Gas and Fuel Co. AGA, and many manufacturers and contractors. The program now provides options to use UPDATED CSIRO resistance values making the program compatible with ENERGY STAR RATING PROGRAMS and allows the advantage of extra insulation to be considered.

The program is self-initiating when Microsoft XL is installed on the computer being used. Insert disk into floppy drive and open Windows Explorer. Activate floppy drive and double click onto RESLOD 5.5.

Accept the macro activation and enter. The program will then ask questions and require answers to be entered.

If an error occurs continue to enter data as requested until you see the directive to save and print. At this stage you can scroll to fields that require correcting or editing and see results immediately.

Remember to save to your own file # and drive and exit the system. This program can be added to your hard drive if you so desire.

The following is a description of the methodology and data used and recommended for consideration when using this heat load program.

CSIRO / AREMA HEAT LOAD METHOD AND DATA

Copyright in this program "RESLOD-5.5 PRO SUITE "resides with the originator Bernard A Connell. Its use is restricted to the purchaser and can only be copied for backup purposes. The program shall not be lent, given or sold to others without the consent of the originator. All care and diligence has been taken to ensure that the program is mathematically valid. However, as users have to apply their best judgement

and experience for many of the inputs the author is not responsible for the interpretation, use and selection of systems or equipment.

I ALSO RECOMMEND THAT YOU OBTAIN THE Australian Standard publication HB276—2004

RESIDENTIAL LOAD SURVEY METHOD FACTOR BASIS

The flow of heat through a building structure may be calculated from:

Q - U.A.K

Where:

Q - Heat transmission (W)

U - Coefficient of heat transfer (W / m' K)

A - Area of surface (m')

K - Temperature difference across the building element (Kelvin)

The following information is concerned with the calculation of U for various building elements.

Overall Heat Transfer Coefficient (U) (W / m2 K)

The overall heat transfer coefficient, U is the rate of heat transfer through unit area of a building element when there is unit difference between the ambient air temperatures on either side of the element. It is calculated as the reciprocal of the sum of the resistances of the individual components of the elements.

For example

For a cavity wall section:

 $U = 1 / R_{SI} + R_1 + R_A + R_2 + R_{S0}$

Where:

R $_{SI} = 1/fsI$ - inside surface air film resistance

R $_{S0}$ = 1/fso - outside surface air film resistance.

R $_A = 1/a$ - air space resistance

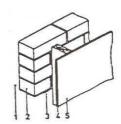
 $R_1 = xJk1$ - inner wall resistance

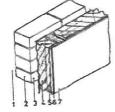
R $_2 = x2/k2$ - outer wall resistance

 F_{si} = inside wall surface film coefficient (W / m' K)

 F_{so} = outside wall surface film coefficient (W / m' K)

A = air space coefficient (W / m2 K)


X 1, X $_2$ = a thickness of materials (metre)


K₁, k₂ = thermal conductivity of materials (W / m' K)

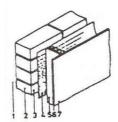

Example of BV wall options

Table 2: Brick Veneer wall Base "R" includes

1.	Outside air resistance.		.03
2.	110mm Brick Resistanc	e.	.18
3.	150mm Space resistance	e	.16
4.	10mm plaster board res	istance.	.059
5.	Inside air resistance.		.12
Total	in table		.549
	Resultant "U" 1.8	21	
Table	2a: Added insulation		
1.	Base wall resistance		.549
2.	110mm rock wool resist	ance	2.500
Total			2.549
Resu	Itant "U" 0.3	92	
Table	2b: Added reflective surf	ace on studs	
1.	Base wall resistance		.549
2.	Foil on outside of frame	resistance	1.060
Total			1.609
Resu	Itant "U" 0.6	522	

These program includes Tables

1: Base Floors R values - including surface and space R where applicable.

- 1a: Typical floor insulation products and R values
- 1b: Typical floor coverings •
- 2: Base Wall R values including surface and space R where applicable. •
- 2a: Typical wall insulation products and R values
- 2b: Reflective surface on stud wall .

3: Base ceiling types R values- including surface and space R where applicable.

3a: Typical ceiling insulation products and R values

3b: Reflective Sarking •

Glass:

A 'U' factor of 6.3 was adopted. See Glass Solar Load notes below.

Vented floor:

Various 'R' factors can be adopted SEE TABLES 1 / 1a / 1b for resistance values listed for progressive build up of total resistance. The program calculates the appropriate "U" factor. The summer gain was modified for average daily Change in ambient Temperatures.

Summer Resultant 'U' factor uses a temperature difference of half the design Kelvin. Winter Resultant 'U' factor uses a temperature difference of the design Kelvin Walls:

Various 'R' factors can be adopted SEE TABLES 2 / 2a / 2b for resistance values listed for progressive build up of total resistance. The program calculates the appropriate "U" factor. The summer gain was modified for average daily Change in ambient Temperatures.

Insulated Ceiling:

Various 'R' factors can be adopted SEE TABLES 3 / 3a / 3b for resistance values listed for progressive build up of total resistance. The program calculates the appropriate "U" factor. The summer gain was modified for average daily Change in ambient Temperatures.

Summer Resultant 'U' factor uses twice the design summer temperature difference. Winter Resultant 'U' factor uses two-thirds the design temperature difference. Partition:

For simplicity a 'U' factor of 1.9 was adopted at half the design temperature difference Ventilation:

Based upon one fresh air change per hour.

Glass Solar Load:

The full potential gain was modified for the shifting sun effect during the daylight hours. This is perhaps the biggest difference between the Residential and Commercial procedures.

If conditions significantly vary from those outlined the estimator should seek guidance or consider reverting to a fully featured heat load formula or program.

This program makes provision for selecting each aspect with:

- 1. Normal Single Glass.
- 2. Double Glazing or glass bricks.
- Internal Shades No Shades Outside Shades 3.

Equipment Selection

It is stressed that the resultant answers from the use of this form are in terms of 'sensible' heat gain or loss. That is the work required to lower or raise the temperature of the air, to levels of comfort. Humidity is not directly controlled, as people are tolerant to a wide range of humidity levels providing temperatures are held in the range of 23°C to 26°C.

This program calculates Sensible Heat load only, as people in a residential situation are tolerant of humidity conditions provided that the dry bulb is held within 22 to 26 degrees DB.

The nominal Cooling is calculated by applying the Equipment Sensible to Total Heat ratio, SHR, as supplied by the equipment manufacturer.

Air Flow

The airflow rate, I/S is calculated from the Minimum Supply air temperature that is entered. This entry will be from 10 to 15 degrees. Lower supply air temperatures may cause Ice formation on the evaporator coil.

Heat pump balance Graph.

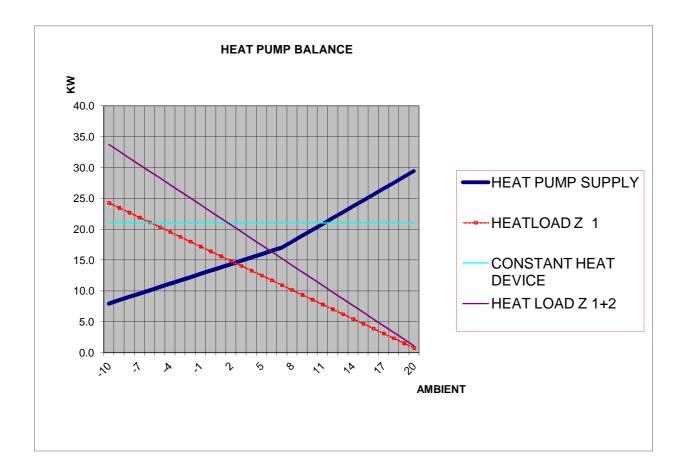
The program allows 2 zones to be entered for both heating and cooling.

The load for each zone cooling and Heating are shown separately and totalled together for consideration.


Provision is made for entry of Standard Rating capacity cooling and Heating.

Standard Cooling entry is multiplied by Sensible Heat Ratio to disclose Sensible cooling capacity. Standard heating capacity is applied across the ambient coordinate of the graph while the load of Zone 1 and Zone 1+2 are applied across the ambient coordinate providing a convenient graphical indication of the Balance points.

Balance point is the point where a given heat pump can provide sufficient heat to handle load. Below the balance point the given heat pump is unable to provide sufficient heat and an indication of the amount of supplemental heat required can be calculated.


REFERENCE TO AIRAH PUBLICATIONS

Designers will find that reference to AIRAH Design manuals such as the Technical Handbook and Manual DA09, Will provide valuable information and CSIRO Data.

I ALSO RECOMMEND THAT YOU OBTAIN THE Australian Standard publication HB276—2004

This graph provides a visual indication of the heating device capability to heat the given structure throughout varying ambient temperatures. Devices with varying heat output as with Heat Pumps may require additional supplementary electric resistance elements to operate in extreme weather conditions, the graph shows a: the size required and b: at what ambient these will be required to be active.

SELECTIONS BASED UPON 'HORSEPOWER' SHOULD NOT BE USED

TABLE A – NUMBER OF AIR CHANGES PER HOUR (HEATING) EXTRACTED FROM AGA.			
AG7	06-1980		
CEILING HEIGHT - m	2.4	3.0	3.6
Low Level (Floor & Wall Registers)	3-4	5-6	6 - 8
High Level (Ceiling Diffusers & High Wall Registers	5 - 6	7 - 8	8 - 10

TABLE B – RECOMMENDED AIR VELOCITIES		
EXTRACTED FROM AGA. AG706-1980		
TYPE OF OUTLET	FACE VELOCITY – m/s	
Supply Floor Register	1.5-3	
Supply Ceiling Diffuser	2-4	
Supply Low Wall Register	1-1.8	
Supply High Wall Register	2-3.5	
Return Air Grilles	1.5-2.5	
Filters	1.5-2	

	JSEFUL INFORMATION -	DUCT VELOCITIES	
	EXTRACTED FROM	AGA. AG706-1980	
APPLICATION		RECOMMENDED	MAXIMUM
Main Ducts		3.5-4.5	4-6
Branch Ducts		3	3.5-5
Radial Branches		3	5
Return Air Ducts		3	4.3

MAXIMUM RECOMMENDED AIRFLOW I/S FOR RESIDENTIAL USE			
	FINAL	INTERMEDIATE	MAIN
FLEX DUCT	BRANCH	DUCT	DUCT
	VELOCITY	VELOCITY	VELOCITY
DIA.mm	2.5 M/s	3.5 M/s	5 M/s
150	40	50	70
200	65	90	130
250	100	150	210
300	150	200	290
350	190	280	400
400	250	360	510
450	310	440	660
500	390	520	790
600	550	780	1250
DUCTS OVER 350 DIA ARE PRONE TO COLLAPSE AND ARE DIFFICULT TO TAPE			
CONSIDER USING DUAL DUCTS TO ACHIEVE LARGE AIR QUANTITIES			

PREPARED FROM DATA AND METHODS RELEASED BY AREMA and C.S.I.R.O.1981

Resload 5.5 PRO. **NEW FEATURES** The new version 5.5 PRO is set out with six individual work sheets for 1. RESLOAD 5.5 PRO - One Two or Three zone heating and cooling calculations. Auto run Macro activation is Ctrl+Shift+Z 2. Heat Load Balance Graph and What If zone Graphs. 3. Location Index Tables. 4. Building material Resistance Tables. 5. HYDRONIC 5.5 PRO - 30 Room heating calculations with What If graphics. Auto run Macro activation is Ctrl+Shift+X for first 15 rooms and Ctrl+Shift+Y for second 15 rooms if required. 6 Evapload 5.5 PRO Single zone Evaporative Cooling Calculations Auto run Macro activation is Ctrl+Shift+Z

RESLOAD 5.5 PRO.

This Program is an upgrade to 2000 Resload 3.2 and all previous versions. With the advent of the National Energy Efficient House Star Rating Systems, the original Comload Data has been expanded to accommodate more locations and building method choices and especially choices of up-graded insulation products.

Location Choices:

The CSIRO Weather Data for over 600 Australian wide Stations is built into the database for convenient choice.

Building Product Choices include:

Base Floor Types 4 Plus provision for custom floor. Prime Insulation Types 25 Plus provision for custom floor insulation. Floor Covering Types

Base Wall Types 15 Plus provision for custom wall.

Prime Insulation Types 30 Plus provision for custom wall insulation.

Reflective Foil Application 1

Base Ceiling Types 4 Plus provision for custom ceiling.

Prime Insulation Types 31 Plus provision for custom ceiling insulation.

Reflective Foil Application 2

To cater for home renovations, merging old and new building structures, the program allows each Zone to have two (2) types of Floor, Wall and Ceiling.

Window Choices include:

Single Glass – Double Glass – Glass Block. With a choice of / Internally Shaded – Non Shaded – Externally Shaded. **Zoning** The Program allows up to three (3) Zones

Typically

Zone 1 = Day

Zone 2 = Common

Zone 3 = Night.

For first cost saving and economical running costs, especially with cooling systems, zoning a home is usually adopted and home occupation at different times of the day usually fall into Day / Common / Night configuration.

The program calculates the cooling and heating needs for all zones at 4PM Day and 9PM Night.

For comparison zones 1&2 and 2&3 and 1&2&3 are added together giving cooling and heating needs for all variations of application.

HYDRONIC 5.5 PROGRAL DETAILS

The program is designed for thirty [30] room manipulation with provision to name each room The local weather data is selected from 600 Australian locations.

Global settings are requested:

- Indoor setpoint temperature. 1.
- 2. Default ceiling height
- 3. Default minimum fresh air changes/Hr.
- 4. System losses as %.
- Heating water flow temperature. 5.
- Heating water return temperature. 6.
- Radiator kW/m². 7.

Global settings may be individually set room by room to allow for different requirements in special areas. Room by room adjustments include:

- Room set-point temperature. Bedrooms / Sick rooms etc. 1.
- 2. Fresh air changes / Hr. Sick rooms etc.
- 3. Room Ceiling heights where diffirent dimensions apply.

All input fields feed automatically wit macro acceptance. If than 30 rooms are required simply enter zero "0" for the idle rooms.

NOTE

Rooms 1A to 15A are initiated by Macro - Ctrl+Shift+X .

Rooms 1b to 15B are initiated by Macro - Ctrl+Shift+Y.

As progressive water flow is calculated the program can be used with the eventual layout calculated in piping order.

This program includes Auto Load FabricTables

- 1: Base Floors R values including surface and space R where applicable.
- 1a: Typical floor insulation products and R values
- 1b: Typical floor coverings
- 2: Base Wall R values including surface and space R where applicable.
- 2a: Typical wall insulation products and R values
- 2b: Reflective surface on stud wall
- 3: Base ceiling types R values- including surface and space R where applicable.
- 3a: Typical ceiling insulation products and R values
- 3b: Reflective Sarking

This program includes Auto Load Glass:

- Normal Single Glass. 1.
- 2. Normal Single Glass with heavy drapes drawn.
- 3. Double Glazing or glass bricks.
- Double Glazing or glass bricks with heavy drapes drawn 4.

Vented floor:

Various 'R' factors can be adopted SEE TABLES 1 / 1a / 1b for resistance values listed for progressive build up of total resistance. The program calculates the appropriate "U" factor. Walls:

Various 'R' factors can be adopted SEE TABLES 2 / 2a / 2b for resistance values listed for progressive build up of total resistance. The program calculates the appropriate "U" factor. Ceiling:

Various 'R' factors can be adopted SEE TABLES 3 / 3a / 3b for resistance values listed for progressive build up of total resistance. The program calculates the appropriate "U" factor.

Partition:

For simplicity a 'U' factor of 1.9 was adopted at half the design temperature difference Ventilation:

Based upon one fresh air change per hour.

Reports:

- 1. Each room is listed with;
- Final Watts. 2.
- Heating Water flow I/S 3.
- Radiator Surface areas M². 4.
- Total building is also graphed showing % of load, window, wall, floor, ceiling and ventilation 5.

Total system

Boiler k/W

total heating water circulation mI/S

- Total building W/M²

EVAPLOAD 5.5 PRO.

This Program is an upgrade to 2000 Resload 3.2 and all previous versions. With the advent of the National Energy Efficient House Star Rating Systems, the original Comload Data has been expanded to accommodate more locations and building method choices and especially choices of up-graded insulation products.

Location Choices:

The CSIRO Weather Data for over 600 Australian wide Stations is built into the database for convenient choice.

Building Product Choices include:

Base Floor Types 4 Plus provision for custom floor. Prime Insulation Types 25 Plus provision for custom floor insulation. Floor Covering Types

Base Wall Types 15 Plus provision for custom wall. Prime Insulation Types 30 Plus provision for custom wall insulation. Reflective Foil Application 1

Base Ceiling Types 4 Plus provision for custom ceiling. Prime Insulation Types 31 Plus provision for custom ceiling insulation. Reflective Foil Application 2

To cater for home renovations, merging old and new building structures, the program allows each Zone to have two (2) types of Floor, Wall and Ceiling.

Window Choices include:

Single Glass – Double Glass – Glass Block. With a choice of / Internally Shaded – Non Shaded – Externally Shaded.

Zoning

This program is applicable to one zone.

As evaporative cooling is easy to apply to the whole house zoning has been ignored. If the house is 2 or more stories there is no input for the in between floor or ceiling as the cooling will be applied to all stories at the same time.


- Top stoty ceiling-roof area is 125 sq m are to be entered.
- Top story floor & Bottom story ceiling are to be ignored.
- Bottom floor 1s 125 sq mare to be added.
- If the bottom floor is larger than the top floor then there will be

extra roof-ceiling to be added

The walls are also special and the outside wall must be added for all floors.

EVAPLOAD 5.5 PRO

EVAPORATIVE COOLING PROCESS CALCULATION

This program returns the required air flow by calculating the evaporative cooling discharge temperature relative to the entered saturation efficiency of the selected evaporative cooler and the locality coincidental WB.

The resultant DB temperature is compared with the desired comfort DB temperature and room load to calculate the necessary air circulation.

The resultant air change rate per hour should fall within 25 to 35 changes per hour.

Changing either unit efficiency or comfort temperature will cause total recalculation and return a new airflow and air change per hour rate.

LOCATION MAPS

90

[A.C.T.	
1	CANBERRA AMO	
2	CANBERRA CITY	
3	CANBERRA FORESTRY	
4	HONEYSUCKLE REEK	
5	ORRORAL VALLEY	
6	MANUAL ENTRY	
[NEW SOUTH WALES	
8	ADELONG P.O.	
9	ALBURY (PUMPING)	
10		
1		
1		
1		
1		
1!		
10		
1		
18		
19		
2		
2		
2		
2		
2		
2		
2	7 CESSNOCK	
2	8 COBAR MO	
2		
3		
3		
3		
3.		
3		
3! 3!		
3		
3		
3		
4		
4	-	
4	-	
4	3 DUNEDOO P.O.	
4		
4		
4		
4		
4		
49		
50 5		
5		
5		
5		
5		
5		
5		
5		
5	9 IVANHOE P.O.*	

60	JERRYS PLAINS P.O.
61	JERVIS BAY
62	KATOOMBA COMPOSITE
63	KEMPSEY
64	
65	KIRKCONNELL *
66	KULNURA (WILLIAM RD)
67	LEETON *
68	LISMORE (CENTRE ST)
69	LITHGOW COMPOSITE *
70	LIVERPOOL COUNCIL
71	LOSTOCK DAM SITE
72	LUCAS HEIGHTS (AAEC)
73	LUCAS HEIGHTS (AAEC)
74	MACQUARIE UNIV.
75	MARSFIELD
76	MARSFIELD
	(MACQUARIE UNIV.)
77	MARYVILLE HVRF
78	MARYVILLE HVRF
79	MERIMBULA AIRPORT
80	MERIMBULA AIRPORT
81	MOLONG P.O.
82	MOLONG P.O.
83	MONTAGUE ISLAND
	(LIGHTHOUSE)
84	MONTAGUE ISLAND
	(LIGHTHOUSE)
85	MOREE MO
86	MOREE P.O.
87	MOREE MO
88	MOREE P.O.
80	

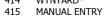
91	MOUNT VICTORIA
92	MOUNT VICTORIA
93	MUDGEE P.O.
94	MUDGEE P.O.
95	MURWILLUMBAH
96	MURWILLUMBAH
97	NALBAUGH *
98	NALBAUGH*
99	NARADHAN P.O.
100	NARADHAN P.O.
101	NARRABRI WEST P.O.
102	NARRANDERA
103	NARRANDERA P.O. *
104	NERRIGA COMPOSITE
105	NEWCASTLE
106	Norah head
107	NOWRA
108	NYNGAN P.O.
109	OBERON PRISON
110	ORANGE P.O.
111	ORANGE AIRPORT
112	ORCHARD HILLS
113	PARRAMATTA NORTH
114	PEAK HILL PO.
115	PERISHER
116	PORT KEMBLA
117	PORT MACQUARIE
118	PROSPECT DAM
119	QUANDIALLA PO.
120	RATHMINES AMO.
121	RICHMOND AMO.
122	SCONE PO.

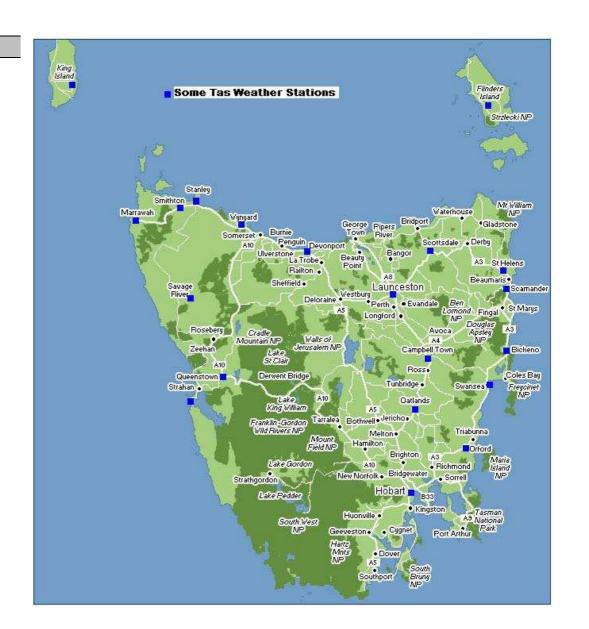
MORUYA HEADS

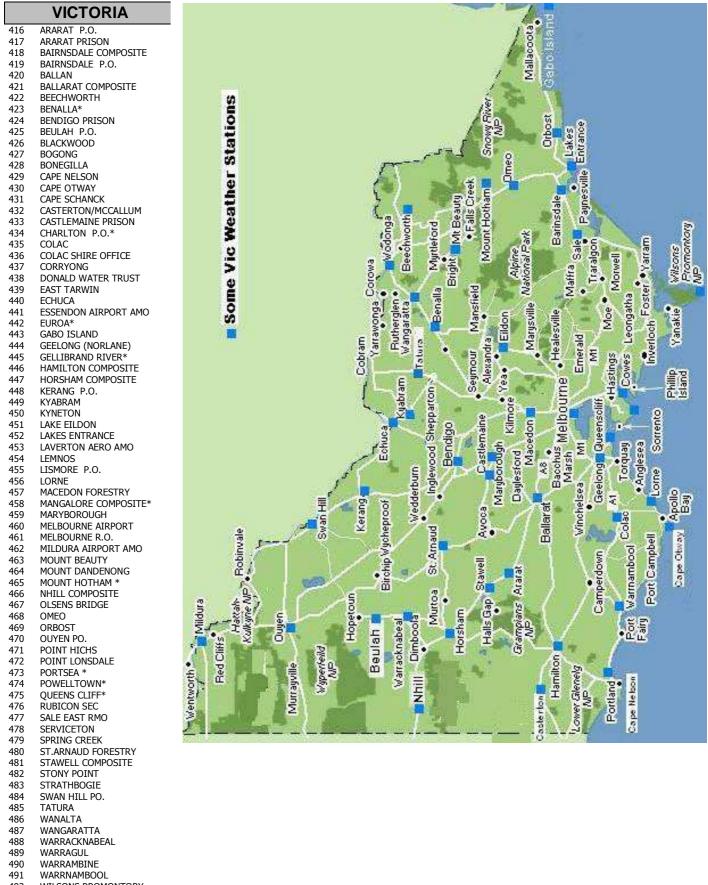
(
MO.
E
ORT
ATION
iΕ
GEE ST.
_LS*
.0.
.0.
.*
MO
0.*
۷)
-

QUEENSLAND 191 ADAVALE P.O. 192 AMBERLEY AERO **ARCHERFIELD IRPORT*** 193 BARALABA P.O. 194 195 BARCALDINE P.O. BEAUDESERT 196 BIRDSVILLE 197 198 BLACKALL BLACKALL P.O.* 199 200 BOLLON P.O.* BOULIA P.O.* 201 BOWEN P.O. 202 BRISBANE AMO 203 BRISBANE R.O. 204 BULBURIN FORESTRY 205 BUNDABERG AERO 206 BUNDABERG P.O. 207 BURKETOWN P.O.* 208 BUSTARD HEAD 209 CAIRNS AMO 210 CALOUNDRA 211 CAMOOWEAL P.O. 212 CAPE CAPRICORN 213 CAPE CLEVELAND 214 CAPE MORETON 215 CARDWELL 216 CHARLEVILLE AMO 217 CHARTERS TOWERS CLERMONT P.O. * CLONCURRY AMO 218 219 220 COEN AERO 221 222 COEN P.O. 223 COLLINSVILLE P.O. COOKTOWN AIRPORT 224 225 COOLOONGATTA AERO 226 COOLOONGATTA COMP. 227 CROYDON P.O. 228 CUNNAMULLA P.O. DALBY P.O. * DOUBLE ISLAND POINT 229 230 231 EMERALD P.O. * 232 FITZROY ISLAND 233 GAYNDAH P.O. 234 GEORGETOWN P.O. 235 GLADSTONE MO 236 GOONDIWINDI P.O. 237 HERBERTON P.O. 238 HERON ISLAND

SOUTH AUSTRALIA ADELAIDE (W TCE) ADELAIDE AIRPORT 293 294 295 ADELAIDE R.O. 296 ALTHORPE ISLAND ANDAMOOKA 297 298 BELAIR (KALYRA) 299 BERRI PO CAPE BORDA 300 CAPE NORTHUMBERLAND 301 CAPE WILLOUGHBY 302 CEDUNA AMO 303 304 CLARE P.O. CLEVE P.O. 305 306 COOBER PEDY 307 COOK HOSPITAL COMP.* ELLISTON P.O. 308 ERNABELLA* 309 FOWLERS BAY 310 GEORGETOWN P.O. 311 312 HAWKER P.O. 313 KADINA P.O. KAPUNDA P.O. 314 315 KEITH P.O. 316 KIMBA P.O. 317 KINGSCOTE P.O.* 318 KYANCUTTA P.O. 319 LAMEROO P.O. 320 LEIGH CREEK AERO 321 LOXTON 322 LUCINDALE P.O.* 323 MAITLAND P.O. 324 MARALINGA 325 MARREE* 326 MINNIPA* 327 MOOMBA 328 MT BARKER P.O. 329 MT GAMBIER AERO AMO 330 MURRAY BRIDGE P.O. 331 NARCOORTE P.O.* 332 **NEPTUNE ISLAND*** 333 NONNING 334 NURIOOTPA V-CULTURAL 335 OODNADATTA AMO 336 PARNDANA EAST 337 PENFIELD* 338 POLDA BASIN 339 PORT AUGUSTA P.O. 340 PORT AUGUSTA PO 341 PORT LINCOLN P.O. 342 PORT PIRIE BHAS SITE 343 RENMARK P.O. 344 ROBE P.O.* 345 ROSEWORTHY 346 SNOWTOWN P.O.* 347 STIRLING 348 STIRLING P.O. 349 STRATHALBYN P.O.* 350 STREAKY BAY P.O. 351 TARCOOLA P.O. 352 TROUBRIDGE SHOAL 353 TURRETFIELD 354 VICTOR HARBOUR P.O. 355 WHYALLA 356 WOOMERA AMO 357 YONGALA P.O. 358 YUNTA MANUAL ENTRY 359




Northern Territory


1

TASMANIA

	IASIMANIA
360	BICHENO COMPOSITE*
361	BUSHY PARK
362	BUTLERS GORGE
363	CAMBRIDGE AERO AMO
364	CAMPBELL TOWN
365	CAPE BRUNY
366	CAPE SORELL
367	CRESSY RESEARCH
368	DEAL ISLAND*
369	DEVONPORT
370	DEVONPORT EAST
370	
	EDDYSTONE
372	ERRIBA
373	FLINDERS ISLAND
374	DEVONPORT
375	EDDYSTONE POINT
376	ERRIBA
377	FLINDERS IS. AIRPORT
378	GROVE RESEARCH
379	HASTINGS CHALET*
380	HOBART AIRPORT AMO
381	KING I. (CURRIE P.O.)
382	KINGSTON*
383	LAKE LEAKE CHALET
384	LAUNCESTON (TI TREE)
385	LAUNCESTON (ELPHIN)
386	LAUNCESTON AIRPORT
387	LOW HEAD
388	MAATSUYKER ISLAND
389	MARRAWAH
390	MAYDENA
391	MOUNT WELLINGTON
392	NEW NORFOLK
393	OAKLANDS P.O.*
394	ORFORD P.O.*
395	PALMERS LOOKOUT
396	PALMERSTON
397	PREOLENNA
398	QUEENSTOWN*
399	QUOIBA
400	REDPA
401	RISDON
402	SAVAGE RIVER
403	SCAMANDER (NTH)
404	SCOTTSDALE
405	SCOTTSDALE (KRAFT)
406	SHANNON HEC
407	SMITHTON COMPOSITE
408	ST HELENS P.O.*
408	STANLEY P.O.
409 410	STRATHGORDON
410	
	SWANSEA
412 413	TASMAN WADATAH DO
413	WARATAH P.O.
414	WYNYARD*

- WILSONS PROMONTORY 492
- WODONGA 493
- WON WRON 494
- 495 WONTHAGGI
- 496 WOODS POINT
- 497 YALLOURN
- MANUAL ENTRY 498

W	ESTERN AUSTRALIA
499	ALBANY ECLIPSE ISLE
500	ALBANY AMO
501	AUGUSTA
502	BENCUBBIN
503	BEVERLEY
504	BRIDGETOWN
505	BROOM AMO
506	BROOM LA GRANGE
507	BROOM CAPE LEVEQUE
508	BULLSBROOK*
509	BUNBURY
510	BUSSELTON CAPE NAT
511	BUSSELTON PO.
512	CARNARVON
513	COLLIE
514	CORRIGIN
515	CUE
516	CUNDERDIN
517	DALWALLINU
518	DERBY PO.
519	DERBY COOLAN ISLAND
520	DERBY COCKATOO ISL
521	DONNYBROOK PO.
522	DWELLINGUP
523	ENEABBA
524	ESPERANCE PO. ESPERANCE M.O.
525	
526	EUCLA
527 528	FITZROY CROSSING FORREST AMO.
528 529	GERALDTON
529	GERALDION

530 531 532 533 534 535 536 537 538 539 540 541	GILES GOLDSWORTHY HALLS CREEK AMO. HALLS CREEK HAMELIN POOL HYDEN COMPOSITE JARRAHWOOD JURIEN KALBARRI KALGOORLIE KALUMBURU M PLAT KALUMBURU
542	KARRATHA DAMPIER
SALT	
543	KATANNING
544	KILLERBERRIN
545	KANUNURRA
546	KURI BAY
547	LAKE GRACE
548	LANCELIN
549	LAVERTON YAMARNA
550	LAVERTON PO.
551	LEARMOUTH
552	LEONORA
553	MANDORA
554	MANDURAH PARK
555	MANJIMUP
556	MARBLE BAR
557	MARDIE
558	MEEKATHARRA
559	MEEKATHARRA PO.
560	MENZIES DIEMALS

561		500	MACTN
561	MENZIES PO.	593	WAGIN
562	MERRIN SHIRE	594	
563	MOUNT MAGINET	595	WILUNA
564	MT BARKER	596	WITTENOOM
565	MULLEWA	597	
566	NAREMBEEN	598	
567	NEWMAN MUNDIWINDI	599	Yalgoo Po.
568	NEWMAN PO.	600	Yalgoo Murgoo
569	NORSEMAN	601	YORK
570	NORTHAM MURESK	602	MANUAL ENTRY
571	NORTHAM COMPOSITE	603	
572	NYANG STATION	604	
573	ONGERUP	605	MANUAL ENTRY
574	ONSLOW AMO.	606	MANUAL ENTRY
575	ONSLOW PO.	607	MANUAL ENTRY
576	PEMBERTON	608	MANUAL ENTRY
577	PERTH AIRPORT	609	MANUAL ENTRY
578	PRETH REGION OFFICE	610	MANUAL ENTRY
579	PINGELLY	611	MANUAL ENTRY
580	PORT HEADLAND	612	MANUAL ENTRY
581	PORT HEADLAND AMO	613	MANUAL ENTRY
582	RAVENSTHORPE	614	MANUAL ENTRY
583	RAWLINNA	615	MANUAL ENTRY
584	REOBOURNE	616	MANUAL ENTRY
585	ROTTNEST	617	MANUAL ENTRY
586	SANDSTONE CASHMERE	618	MANUAL ENTRY
587	SANDSTONE YEELIRRIE	619	MANUAL ENTRY
588	SERPENTINE	620	MANUAL ENTRY
589	SHARK BAY	621	MANUAL ENTRY
590	SOUTHERN CROSS		
591	THREE RIVERS		
592	TROUGHTON ISLAND		

A HISTORY OF THE AREMA LOAD ESTIMATION PROGRAMS

The Members of the Unitary Section of AREMA, chaired by Ian Frith (Dunn Airconditioning) proposed that there was a need for a simple calculation procedure for estimating the Air Conditioning requirements of Residential Buildings. This was in 1978.

A small committee headed by Denis Joseph (Lennox IXL P/L) and Mike Wooldridge and Don Pescod (Building Research Division - CSIRO) was formed to consider the project and prepare recommendations. This became known as RESLOAD.

Supporting AREMA Members included CARRIER, CLARKE-DAIKIN, CROCKFORD & ROBERTSON, DUNN(Airtemp), EMAIL, LENNOX, LUKE AND POPE.

The CSIRO produced load factors that could be used and the results from applying these were compared with those that some participants found from using their own procedures. If 1.0 was the Load from using the proposed method, variations were between 0.56 and 1.17.

CSIRO had compared the results from their suggested program with their rigorous TEMPER program and found the proposed values acceptable. Models were run under a wide variation of Climate - Darwin to Melbourne and Perth to Brisbane for instance.

RESLOAD was accepted by the SECV and the AGL and was included in a booklet produced by AREMA, AIRAH and the Heating & Cooling Industry as an aid to the buying public.

The AREMA Unitary Section under the Chairmanship of Rob. Dunn, then voted for the creation of an Australian orientated <u>Load Estimation</u> procedure for <u>Light Commercial Buildings</u>, following on the general acceptance of that created for Australian Residences. (RESLOAD)

The values and procedures are those referred to as COMLOAD1 in the programs created by HVAC Innovations of Glen Iris.

The Instruction sheet stated that "The Solar Heat Gains are the maximum occuring between the months of December to March at 35 South Latitude." This limitation was accepted as most installations were within these limits, give or take a few degrees of Latitude.

A number of AREMA Unitary Section Members adopted this procedure and distributed Survey sheets in pad form under their Banner with acknowledgements to AREMA and the CSIRO.

As the AC business expanded North, AREMA decided to make COMLOAD1 more relevant to these lower latitudes and to also take advantage of Solar Research done by John Spencer of the CSIRO. This revised procedure is COMLOAD2. Denis Joseph was commissioned to undertake these revisions.

Revised Solar Gains were proposed 1992 and agreed to by John Spencer. Latitude dependant tables were calculated, using ASHRAE algorithms and based upon the CSIRO Solar Gain Data printed in the AIRAH 1989 Handbook.

Opportunity was taken at this time to take into account varying "delay" factors due to the percentage of Glazing to Total Wall Areas as the use of greater Glass ratios was becoming popular. Simply put, the greater the degree of Glass, the quicker the response. Variations were based upon ASHRAE Research Report 548 and transmissions factors, as in the ASHRAE Fundamentals Handbook of that time. The principles of change were discussed with Mike Wooldridge. Improvements included variable factors for haze created by moisture laden atmospheres, in line with the research by Rao and Seshadri (Building Research Institute- India). The variation of Dew Point with altitude was discussed with the Bureau of Meteorology. This resulted in calculating the Clearness Numbers for various Climates in accordance with the ASHRAE recommendations.

At least two Major Suppliers of Packaged AC Equipment have adopted COMLOAD2 as the basis of their own Load Estimation programs for use by Designer / Contractors.

Subsequent developments

In 2002 Bern Connell HVAC Innovations Consulting and Software applied Resistance tables from "FIRST RATE" house energy rating software manual to provide homogeneous data with both programs.

2004 THE MASTER PLUMBING ASSOCIATION, PLUMBING INDUSTRY COORPORATION, AND AUSTRALIAN STANDARDS ASSOCIATION INCLUDED RESLOAD METHODS IN THE AUSTRALIAN STANDARD DOCUMENT HB276--2004

